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Abstract We present an improved version of the integrability test based On application of 
Lie point transformations acting on the bare ‘linear problem’. The test is then applied to 
the inhomogeneous Heisenberg ferromagnet model equation. The integrable cases selected 
by this test are identical with those obtained by the standard Painled test. 

1. Introduction 

The integrable systems of nonlinear partial differential equations (‘soliton systems’) 
have the important property of being equivalent to the integrability conditions for some 
linear system of partial differential equations with a parameter (the so-called spectral 
parameter). This linear system is known as a Lax pair (or linear problem) associated 
with a given integrable system [I ,  21. 

On the other hand, numerous nonlinear systems are equivalent to the integrability 
conditions for some linear system without any parameter (non-parametric ‘Lax pair’ or 
bare ‘linear problem’). The so-called Gauss-Mainardi-Codazzi-Ricci equations (see 
for example [3-5]) describing immersions of surfaces into ambient spaces form a very 
large class of systems of that kind. To isolate integrable systems within such a class 
one has (at least) to insert a ‘good‘ parameter into the corresponding non-parametric 
‘Lax pair’. 

It seems natural to do that by an appropriate one-parameter group of trans- 
formations which femes unchanged the considered nonlinear system, and, at the same 
time, changes the linear problem. Apparently, it results in an introduction of the group 
parameter into this linear problem. 

The possibility of an identification of the spectral parameter witha group parameter 
was noticed many years ago (see for instance [6,7]) but the considered transformations 
were quite simple (scaling, Galilean boosts, etc). The systematic approach to that prob- 
lem was first given by Levi e f  a1 [SI. In particular, they proposed the study of all one- 
parameter groups of Lie point symmetries. An extension of the approach of [SI to non- 
local transformations was considered in [9, IO]. 

There is another, trivial, possibility of inserting a parameter: by application of any 
parameter-dependent gauge transformation. It is commonly believed, however, that a 
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‘good’ spectral parameter cannot be gauged out. Therefore transformations inserting a 
parameter in this trivial way should be considered as the symmetries of the non- 
parametric ‘Lax pair’. 

The above considerations yield a working algorithm to isolate integrable systems 
(see [ I I ,  121). It consists of the following steps: 

(1) computing the algebra of infinitesimal Lie point symmetries of the nonlinear 
system; 

(2) computing the algebra of infinitesimal Lie point symmetries of the correspond- 
ing non-parametric ‘Lax pair’; 

(3) comparison between Lie algebras obtained this way: if they are not identical 
then the nonlinear system under consideration is conjectured to be integrable; 

(4) calculation of the one-parameter group corresponding to any vector field which 
generates a symmetry of the nonlinear system but does not generate a symmetry 
of the non-parametric ‘Lax pair’: the action of this group inserts the parameter 
which is supposed to be a ‘good’ spectral parameter. In principle, the obtained 
parumetric Lax pair can be further used to prove the expected integrability. 

The test described above works properly when applied to some particular cases including 
the so-called ‘AKNS class’ of soliton systems ([ 131, see also [7]). 

One can also hope to identify some new integrable systems this way. The first case 
for which such a procedure turned out to be successful is the so-called Bianchi system 
for which a non-isospectral linear problem was obtained [ 141. 

The aim of this paper is to perform one more test of the above described algorithm; 
namely, we discuss in detail the application of the above algorithm to the inhomogene- 
ous Heisenberg ferromagnet equation (1). 

The paper is organized as follows. In section 2 we discuss the inhomogeneous 
Heisenberg ferromagnet equation. In sections 3 and 4 we apply the above algorithm 
based on Lie point symmetries. It tums out that not UN integrable cases can be obtained 
this way. Then, in sections 5 and 6, we present an improved version of this algorithm: 
a more general class of symmetries (‘extended‘ Lie point symmetries) is admitted. 
Finally, in section 7, we apply the standard Painlevi test to verify and confirm our 
conclusions. 

All calculations and proofs have been placed in three appendices. 

2. The inhomogeneous Heisenberg ferromagnet (IHF) equation and the 
non-homogeneous, nonlinear Schrodinger (NHNS) system 

The dynamics of the one-dimensional classical inhomogeneous Heisenberg ferromagnet 
in the continuum limit is described by the following equation 

where the unknown S=S(x,  [)€E3 is a unit vector function of one-dimensional space 
variable x and time t ,  whilef=f(x, t)cR is given. Physically, the functionf--called the 
coupling function-is the continuum limit of the coupling ‘constants’ between neigh- 
bouring spins. Here we adopt the convention: comma stands for differentiation and A 
means cross-product. 
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The first geometrical interpretation of equation (l), based on the Lamb's approach 
[15,16], was given by Lakshmanan and Bullough [17] forflinear in xand by Balakrish- 
nan [IS] for general$ Another geometrical interpretation of this model (see [19,20]) 
is based on the so-called soliton surfaces approach [5]. 

The IHF equation (1) is equivalent (see [U, IS]) to the so-called non-homogeneous. 
nonlinear Schrodinger system 

iq,,+(fq).,+2qR=o ( 2 4  

&- (fl d*),x -f2 d 2 = 0  ( 2 4  

where q=q(x ,  t )cC and R=R(x, t ) c R  areunknowns. 

'linear problem' associated with the system (2): 
Indeed, some simple geometrical consideration (see [8]) lead to the following bare 

which is already known [18]. Taking into account the isomorphism s u ( 2 ) d  (the 
commutator is identified with the vector product, etc) one can easily check that 

~ ~ 

,$'=$Y-'iq3'%' (4) 

where m3=diag(l, -l), solves the IHF equation (1) for anyf(this result was known 
earlier for the casesf=constant [21] andf=ax+ b [22]). 

Equation (1) forflinear in x is well known to be integrable [17]. Lakshmanan and 
rxI?esan [22j f~mn!iterl thc i~verse mpthor! and fomd the one-soliton solution h~this 
case. The integrability of (2) for linear f was proved even earlier [23]. 

It has been proved in [24] thatflinear in x is the only inhomogeneity function for 
which the system (2) has the PainlevB property-the usual companion to complete 
integrability (see section 7). A proof that linearity offis both the necessary and sufficient 
condition for that property is given in appendix 3. 

3. Introduction of the spectral parameter by Lie point symmetries 

Let us consider a nonlinear system (denoted by A=O) for m unknown functions q'= 
q"(x', 2) (a  = 1, . . . , m) which is equivalent to integrability conditions for a system of 
two linear equations of the following form: 

Y& = UkY k = l , 2  (5) 

where unknown Y =U(.', 2) is a matrix function and matrices Uk depend on 2, q" 
and derivatives of q". The system (5) (bare 'linear problem') is denoted by A = O .  

The algebra ,d of Lie point symmetries of the nonlinear system A=O is defined in 
the usual way [25]: 

d:= { w :  pr'"'w(A) =Ola=o}  ( 6 4  

where pr% is the so-called nth prolongation of the vector field w 

W =  s*(x, dak+ VYX, da.. ( 6 4  
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In (64 n stands for the order of the system A=O, while in (6b) ck (k=l,  2) and f 
(a = 1, . . . , M )  are scalar functions satisfying the so-called 'determining equations'. 
Obviously ak=a/a2, a, =a/aq" and the Einstein summation convention is assumed. 

Similarly, the algebra 8' of Lie point symmetries of the bare 'linear problem' is 
'defined as follows [I], 121: 

&":={U: u = x ( V )  &pr'"'V(~)=OIA-o.~-o} ( 7 4  
where Vis a vector field of the form 

V=&(X, q)ak+H"(X, q)a,+M(x, q y a v  (76) 
-k nistheprojection: n(V)=Sk&+H"d,,r, (k=1,2)andHU(a=1,. .  . ,m)arescalar 

functions, and M is a matrix function. In (76) we have used a, to denote partial 
differentiation w.r. to all matrix elements of Y. 

The determining equations which define the algebra d' can be reduced to the 
following form [ l l ,  121: 

Dk(M) [ u k ,  MI + pr("'u( uk) + Dk( 5') q l A - 0  ( 8 )  
where k =  1,2 and Dk is the total derivative with respect to 2. 

We conjecture that the parameter inserted into the bare 'linear problem' by one- 
parameter group generated by any vector field E&-8' (i.e. us& and U&&') is a 
'good' spectral parameter. 

4. Introduction of the spectral parameter by Lie point symmetries in the case of 
NWNS system 

Applying the algorithm described in sections 1 and 3 to the NHNS system (2) and its 
bare 'linear problem' (3) we obtain (see appendix 1) that Lie algebras at and 8' are 
different only in the following 2 cases: 

(1) f=bW ( 9 4  

f= n(t)x+ Kla(t) + Kza(t) U ( T )  dz (96) (2) s,' 
where a and b are any functions o f t  [26]. 

In both cases: 

dim(&)-dim(8')= 1. (10) 

(1) wI =2pa,+ixqa, (Ira) 

(1lb)  (2) 

The vector field belonging to d-8' is given, respectively, by (see appendix 1): 

a' 
0, = ( Z X + Z K ~  +&a)u&+- a,+ (i- zU)&- 

a 

where the dot denotes the derivative with respect to t 

a=jo 'o( r )dr  D=S'b(r)dr .  0 

Of course, any element of .M may be added to wI or ul . 
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One-parameter groups generated by vector fields (1 1) can be computed in the s t a n - ~  

( 1 )  wI generates the group Tk-exp(kwl) which acts as follows: 

TkX=X + 2pk Tkq=qexp(i(kx+pkZ)) 

Tkt=t TkR = R. 

dard way. The group parametcr will be denoted by k. 

(13) 

(2) U, generates the group Tk=exp(kul) given by .~ 

a( Tkf)=a(t)/S where s k  := 1 -ka( L )  (W 
04b) 

T&=R/(Tkt)’ (14d) 

and, as a consequence 

f(Tk& Tkt)=S;2[a(Tkt)/a(t)lf(x, t ) .  (14e) 

Transforming the bare ‘linear problem’ (3) according to the transformations (13) 
and (14) and then performing a gauge transformation given, respectively, by 

TkY = exp - o,(kx + pk2) (154 

(15b) 

(1, (: 
(2) TkY=eXp 

we obtain the following parametric linear problem: 

where A is given respectively by: 

(1) A=k/2 (174 

(2) A= k/(2+ 2ka). 1 1 7 ~  

One can easily recognize that (16) is identical with the standard parametric linear 
problem associated with the NHNS system (see [17,27,281). 

Therefore in the case of the NHNS system, Lie point symmetries always introduce a 
‘good’ spectral parameter (in agreement with our conjecture). 

However, the same linear problem exists for any coupling function of the formf= 
a(t)x+b(t). Moreover, the parameter A is given by (17b) for arbitrary a and b. 

Thus, unfortunately, in some integrable cases (those corresponding to f linear in x 
but different from (9)), inserting the spectral parameter by Lie point symmetries turns 
out to be impossible. 
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5. Extended Lie point symmetries 

The important conclusion of section 4 is that the Lie point symmetries are not sufficient 
to isolate all integrable cases. To improve our test of integrability it is necessary to 
admit a more general class of symmetries. 

First of all, let us consider transformations which change the coupling function: the 
function f = f ( x ,  t )  is transformed into some other function f) about which we 
make no assumptions. To compute such symmetries we apply a procedure which is 
similar to the standard algorithm of [25] but gives a larger class of symmetries: 
'extended' Lie point symmetries ([IZ]). 

In general, this procedure can be applied to those systems of differential equations 
which contain some function F as a parameter. 

Let A=O be a system of differential equations whose independent and dependent 
variables are denoted by x=(xl, 2) and q=(qi, . . . , g), respectively. Assume that this 
system is parameterized by the function F=F(x).  

Consider the vector fields of the form: 

e=$(., q)ak+i*(x, q ) a a + w a F  (18) 
where p (k= 1,2), fj" ( a  = 1, . . . , m) and Q are some functions. 

We define extended Lie point symmetries as follows. The prolongation pr'"'ii is 
computed in the standard way [25]:fis treated as one more dependent variable. The 
prolonged vector field acts on the equation A=O in the usual way. 

Workiog with the determining equations, we make a non-standard step: we stop 
treating F a s  one more variable and begin to treat it as a function of xi, 2. Thus f k ,  fj" 
and Q, a solution to the determining equations, may depend on F i n  a functional way 
(e.g. through some integrals) similarly to the case of Lie point symmetries (see, for 
instance, formulas (1 1)). 

The extended Lie point symmetries are, obviously, a generalization of the standard 
Lie point symmetries which can be obtained from the former by imposing the following 
constraint on Cg 

CD = FJ 5' + F2f*. (19) 
In particular, one can consider the extended Lie point symmetries of the bare 'linear 

problem' A = O .  Thus, in analogy to the case discussed in section 3, we obtain the 
algebras 2 and 2 of extended point symmetries of systems A = O  and A = O ,  
respectively : - 

d : = ( d :  pr(")B(A)=Old=a} (204 - 
d' := { B :  B =  n( P) & pr'"' V(A') = 01 a-oa- a } (20b) 

where 5 is of the form (18), has an additional component M(x,  g)Y&, n is the 
projection along this component (similarly to section 3) and in the determining equa- 
tions F is treated as a function of x rather than a variable. 

6. Extended Lie point symmetries as a tool to isolate all known integrable cases of the 
NHNS system 

Upon computing the algebras of extended Lie point symmetries for the NHNS system 
(2) and for its bare 'linear problem' (3) we obtain (see appendix 2) that a is identical 
to 2 ifffis not linear in x. 



On integrability of ~HFmode[: examination of a new test 1651 

The algebras 3 and 3' are different ifff=a(f)x+b(t), where a and b are any 
functions off.  Moreover: 

dim(&-dim(a) = 1 (21) 

U =  2(xa +p)& + (ix -2a)qJ,+ 2aaJ,,+ (4bn - k p ) J ,  (22) 

and the following vector field belongs to a-.a: 

where a and p are non-local variables defined by (12). 
The integration of the vector field U, carried out in appendix 2, is non-trivial. As a 

result we obtain the following one-parameter family of transformations (computed 
earlier in a different way, see [9, lo]) 

X 2kb(z)dr 
TkX= (1 -ka)'+l0 ( l - k a ( ~ ) ) ~  

ik2b(T)dr T@=q(l-ka)'exp - 
(1 :a +lo (1 - ka(ij)') 

a 
Tg=(l -ka)' 

b - a ' 2kb(t)dz 
(1 (1 - ka)' lo ( I - k a ( ~ ) ) ~ '  

Tkb 

In (23) the parameter ke  R. 
Actually, one can prove that formulas (23) define a one-parameter group of trans- 

formations [lo]. However, they are not point transformations: they act in a non-local 
way on variables a and b. 

Transforming the bare 'linear problem' (3) according to the transformation (23) 
and then performing the gauge transformation given by 

we obtain (now for myflinear in x!) the linear problem (16) with 1 given by (17b). 
Therefore extended Lie point symmetries isolate all f for which the NHNS system is 

known to be integrable. However we have not obtained any new integrable cases in 
this way. 

I. Test for the Painlev6 property of the NHNS system 

The result that symmetry analysis did not provide new integrable cases, i.e. other than 
the known case f=a(t)x+b(t), had been rather expected: it is believed that this is the 
only integrable case. The result of [ Z ]  confirms the supposition, namely it has been 
shown there that the inhomogeneity function f satisfying 

~. 

L.rx = 0 (25) 
is the only one for which the system (2) possesses the generalized PainlevC property, 
i.e. for which the general solution of that system extended to complex independent 
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variables is free from branch and essential singularities whose position and shape depend 
on initial conditions [29]. The test for that property [29,30] relies on constructing the 
explicit general solution in the form of a Laurent series about an arbitrary singularity 
surface. When a PDE has that property (is ‘Painlev& integrable’), the recurrence formulae 
from which the coefficients are calculated, should be underdetermined so that they yield 
exactly n -  1 arbitrruy functions f0r.a differential equation of nth order while the nth 
arbitrary function is the singularity surface itself. This test is not always equivalent to 
a check for complete integrability. Among others, the method does not prove conver- 
gence of the series, hence the positive result is not a sufficient condition. Besides, many 
examples of integrable equations may be given which possess solutions with movable 
branch points or essential singularities, even among the ODES [31]. Nevertheless the 
test provides a useful hint for selection of integrable cases, especially when the tested 
equation contains arbitrary functions as parameters. Detailed discussion of the connec- 
tion between the Painlevi: property and integrability may be found in [32]. In appendix 
3 we extend the result of [24] proving that the condition (25) is both necessary and 
sufficient for the ‘Painlev6 integrability’ of equation (2). 

8. Conclusions 

The non-homogeneous, nonlinear Schrodinger system (2) (equivalent to the IHF equa- 
tion) has been used as an example for testing a new integrability test which is based 
on Lie point symmetries [S, 121. The result of this testing is positive in the sense that 
all cases selected by our test are integrable. Unfortunately, not all integrable cases can 
be isolated this way. We were able to work out an improved version of our test, based 
on a more general class of symmetries (extended Lie point symmetries [12]), which 
isolates all the integrable cases of (2). Thus, the test based on Lie point symmetries 
seems to select (in general) only some integrable cases. However, one can still hope to 
convert this test into a working criterion of integrability by admitting extended point 
symmetries. Obviously, tests of this kind require further examination. Some other 
examples are under consideration. 
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Appendix I. Lie point symmetries of the NHNS system 

AI .  1. Generators of Lie point symmetries of the NHNS system 

Applying the definition (6)  we obtain, in the standard way, that Lie point symmetries 
o t  the NHNS system are generated by vector fields of the form 
w= (CX+ h)&+ T&+ (ikx+ 2ip - c)&- (ikx+ 2ip + c)&+ ( p  - t R ) a n  (Al.la) 
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wherep=p(f) isanarbitraryfunction, whilee=c(t), h=h(t) ,  s = z ( t )  and k=constant 
have to satisfy equations 

Ex+h= 2kf (Al. lb) 

LY(cx+ h) +X,z = (2c - Z) f (ALlc)  

where f= f(+, t) is a coupling function of the NHNS system, and, finally, the dot denotes 
the derivative with respect to t. 

AI.2. Lie point symmetries of ihe 'bare' linear problem 

Lie point symmetries of the linear system ( 3 )  are generated by vector fields of the form 
(76): 

(A1.2) 

where real 5,  z, p and complex q,  v are functions of x, t, q, Q, R. These functions have 
to satisfy the determining equations (8) which assume the following form: 

Ox&) =iqD-@v+RD,(z) (A1.3a) 

DLP) = -VDdfq) - ~ D d f i )  + Y + RD,(z)  (A1.3b) 

4(~)=-2ipq+q+fq4,(5)+ie,(qf)D~fz) ( A 1 . 3 ~ )  

Ddv)  =2ivR+ 2pDAqf 1 +iDx(q5.fr+ q7f.J +~iDx(fq) -iDx(fq)Dx( 5) 
-iD,(fq)D,(z)+qd,(C)+iD,(fq)D,(.r). (A1.3d) 

The procedure of solving equations (A1.3) is simple and rather standard [Ill.  We 
obtain that infinitesimal Lie point symmetries of ( 3 )  are given by 

v= (CG +fi& + 78, + (2ip -ca)qaq+ ( p  - %)an + p  (i !.)av (Al.&) 

where p = p ( t )  is an arbitrary function, while the function r = r ( t )  and constants CO, ha 
have to satisfy the equation 

(AI .4b) 

Comparing the Lie algebras .d and d' (see section 3 )  given by (AI.l) and (A1.4), 

If the function f is nof linear in x, then (Al . lb )  implies k=O. Therefore in that case 

fJ(C0X + ha) +f;$ = (2co - w 
respectively, one can easily see that they are identical iff k=O. 

d=d'. The case of f==a( t )x+b( t )  has to be studied in more detail. 

A1.3. Lie point symmei'ries of NI" system in the case f = ax + b 

Suppose that f=a(r)n-b(f) and ff0. Both sides of the equations (Al . lb ,  c) are then 
linearin x. Therefore (Al. lb,  c) become equivalent to the following system of four 
equations : 

E=Xa ( A 1 . 5 ~ )  

h=Xb (A1.53) 
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(uz )=uc  

ah+ (br)=2bc. 

From (A%, b) we compute h and c: 

h= 2kp + hl (p:=I0'b(r) dT,h,=const 

(A1.5~) 

(A1.5d) 

(A1.6~) 

(a:=[o'a(z) dz, cI=constant . (A1.6b) 1 c=2ka + cI 

Then equations (AlSc, d )  assume the form 

(UT) .  = 2kaa + ucI (Al.7~) 

2k(up-2ba)+(br)-+ahl=2bcl.  (A1.7b) 

The equation (Al .7~)  for u=O becomes an identity. Then, it results from (A1.76) that: 

r=(Zc,p+d,)/b fora=Oandb$O (A1.8~) 

where d,=constant. If ~$0, then we compute T from (A1.7~) 

r=(ka2+clu + t , ) /a  foru+O (Al.8b) 

However, in the case a f 0  the equation (A1.7b) still remains to be satisfied, giving 

2k(ap-ba)-bcl +alll + ( I ~ +  acl+ka2)(b/a)-=0. (A1.9) 

Assuming that c i  =U has (locally) a constant sign we can determine the function 
P = p ( a ) .  Then b=apl and (b/u).=up" (prime denotes the derivative with respect to 
a).  Therefore: 

(A1.lO) 

If t I=cl=k=hI=O then any p solves (A1.10). In other cases the solution to (A1.10) 
is given by 

(Al.llu) 

where dt , t I  are constants. 

the following constraint on U and b: 

( I ]  + acI +kaz)p"-(cl  +2ka)p'+2kp+h1 =O. 

p = KO+ Kla +$K2a2 

where Kj are constants subject to the constraint 

2kK0- clKl + tlKz= hl . (Al. 1 16) 

Differentiating (Al.11~) we obtain finally that the system (A1.5) has a non-trivial 
solution iff [26] 

b( f )=&c~(I )+K2~( t )  U ( T )  dz (A1.12) Jb' 
or (taking into account earlier considerations) us0 .  

For other a, b the only solution of (A1.5) is given by 

c= h = k =  r=O, (Al. 13) 
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The vector field w is parameterized in this case only by an arbitrary function p =p(t). 
Thus we have three different cases: 

(9 f = b W  
The algebra d is spanned by: 

wI =2pax+ ixqa, 

w2=xax+ (2P/b)a,-qaq-2(p/b).RaR 
w3 =a, 

w p  = 2ipqaq+ pa,. 
w4= (I/b)&- (l/b).RdR 

The commutators read as follows: 
I 

[ W 2 r w I l = y l  [w3. wll=zwo,.I 

(AI .14a) 
(A1.146) 
(A1.14~) 

(A 1.14d) 
(A1.14e) 

[w4, w2 1 = 2w4 [w4, w31=0 . 1,0,1=0 ~ ‘ 3 , W p l = O  

[w,, % l = O  [wz, fjJal=2”/b [w43mp1=0#/b.  

The algebra .vi” is generated by w2, w3, w4, u p ,  i.e. dfd‘. 

(ii) f=n(x+ 4 +& J a) 
The algebra s4 is spanned by 

(AI. 154  

(Al. 156) 

u3=-K2a,+ (i/a)a,+((ilaZ)RaR (Al. 1 5c) 

op =zip& + fi  aR . (A1.15d) 

(3 a2 
vI = (2w+24 + K2a)a&+- a,+ (ix- 2a)qa,- - Ran 

U,= (x+ Kl)a, + (a/@, - qa,- (ala)”, 

U 

The commutators are given by: 
1 

[U,, v z l = ~ 3  
I 

[OZ, UI 1 = V I  + i O R a q  

L o p ,  w,l=O [ V I ,  %I=@#& [vz, a,,]= wfro/n 

rv3, w p l = @ l i / o .  

[v3, vll=2v2-iwo,=K2 

The algebra s?‘ is generated by v2,  v 3 ,  w, ,  i.e. &#.vi”. 

(iii) Otherflinear in x. 
The algebras rcP and d’ are identical and spanned by w p  (A1.15d). 

Appendix 2. Extended Lie point symmetries of NHNS system 

A2.l .  Generators of extended point symmetries of NHNS system 

Extended Lie point symmetries of the NHNS system (2) are generated by vector fields 
of the form (18): 

(A2.1) B = ga, + ra,+ ‘laq + tfai+ yaR+ @a, 
where generators 5, 5, 17, t f ,  y depend on x ,  t, q, 1, R, and @ is a function of x, t .  
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The determining equations read as follows (see (20~)): 

O=iD,(q) -iDX g )qX-iD,(+?, + + -2Dx(5)D:(fq) 

-2qr(r)DxDt(.h) - D:( C)D.r(h) - D:(r)Dt(fq) + 2VR + 2qY (A2.2a) 

o x (  Y) -ox( 4 )R.r - Dx(z)Rt 

= a D A t l )  -Ox( 5 )qx-Ddr)qr )  + d{Dx(?) - D x (  E)&-  Dx(r)&) 

+ 2M{&(@) -D.4 <) f s -Ddr )L  I 
+ q x {  iV+ij@) + G(rlffq@J + 2LT{v7+ (A2.26) 

where, because of (2), q, and R, depend on other variables: 

q, = + 2KdX + KXd + 2iqR (A2.3~) 

R,=fqd ffid + 2L&. (A2.3b) 

Equations (A2.2) are polynomials in derivatives. Assuming f$O and equating to 

T = Z ( f )  5 = a x )  (A2.44 

and that q is linear in q and does not depend on R. 
Now, one can easily see that iD,(q), -iZq,, 2qR and 2qy are the only terms in 

(A2.2~) which depend on R. The first three of them are linear in R therefore y has to 
be linear in R as well. 

zero coefficients of R,, qxr,  &, qXq.. and q: in (A2.2u), we obtain immediately that 

Equating to zero the coefficient of R in (A2.24 we obtain that 

rl = Oq y=-ZR+B(x,  t , q , @  (A2.46) . 
where A is a complex function and B is real. 

following form: 
After substituting (A2.3) and (A2.4) the determining equations (A2.2) assume the 

+ ( @ p + f , Z -  2Lxz55 -f,5j.v+fA.nv+ 2f'vAyY+ L4.f + 2B)q=O (A2.5~) 

B,qqx f B . 8 x  + B , x  

= (2@,+2f,Z +f(A +2)-y+2Lx(A f2))qq 

+ (qX+ q M @  +f(f+ A + 2)). (A2.5b) 
Equating to zero coefficients of qIx, qx, C& we obtain a system of equations for 

B=B(t)  (A2.6~) 

@=f(25.T- Z). (A2.6b) 

functions 5,  5, A, B and @. One can easily solve some of these equations to obtain 

Moreover it is convenient to replace A by real functions c and s: 

A=-c(x ,  f)+is(x, f). (A2.6~) 
Now the system of equations resulting from (A2.5) assumes the following form: 

<,, = 2fiJ (A2.7~) 

2fc ,x  = 3x., (A2.7b) 
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(A2.7~) 

(A2.7d) 

(A2.7e) 

(A2.7f) 

c=c(t) and c=cx+h whereh=h(t) . (A2.8) 

and equations (A2.7) hecome equivalent to the following system: 

Ex+ h= 2fs.. (A2.9~) 

s,,=2B (A2.9b) 

=fs.xr + 2LG.X. (A2.9~) 

Differentiating (A2.9~) and substituting this result into (A2.9~) we obtain that s is 
linear in x. Then, from (A2.96) and ( A 2 . 6 ~ )  it follows that 

s = kx +2p(t) (A2.10a) 

B=/ i  (A2. lob) 

where p is a function and k is a constant. Thus the system (A2.9) becomes equivalent 
to the equation 

(A2.11) 

It is worthwhile pointing out that (A2.11) is identical with (A1.Ib): the first condi- 
tion dehing standard Lie point symmetries. The second condition, (ALlc), is an 
exemplification of (19). 

The equation (A2.11) can be easily solved. Suppose first that k = 0. Then, irrespective 
off,  we have 

c=co=conStant h = ho=constant. (A2.12) 

EX + h = 2kJ 

Therefore, taking into account (A2.4), (A2.6) and (A2.10), we obtain: 

c=cox+ ho z=r(i)  (A2. I3a) 

tl = (2Mf)  - c o ) ~  y = P - Z R  (A2.136) 

@= f(2co- f). (A2.13~) 

If k#O then f has to be of the form f=a(f)x+b(f), and we obtain that 

c-2ka +CO h= 2kp + ho (A2.14) 

where a and p are defined by (12). Therefore 

< =2k(ax+P)  + cox+ho T=T(t) (A2.15a) 

q =k(ix-Za) + 2ip(f) - co y=/ i  - t R  (A2.156) 

@=(a+ b)(4ka +2co- t). (A2.15~) 

The last formula implies that the set of functions f which are linear in x is trans- 
formed into itself. In this case it is natural to treat a and b rather thanfas additional 
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variables. The action of ii on a, b can be easily computed: 

CJ = iif= (5a)x+a(5x) + iib= (Ga)x+at; + 5b (A2.16) 

and, taking into account (A2.15a, c), we have 

iia=(2nza+co-f)n 

iib=k(4ab-2~a)+(2co-.l)b-hoa. 

(A2.174 

(A2.17b) 

For f = 0 the NHNS system reduces to a linear equation and this case is not considered 
in our paper. The determining equations (A2.2) then imply that @ = O ,  i.e. f = O  is 
transformed into f=O. 

A2.2. Extended point symmetries of the ‘bare’ linear problem 

Extended Lie point symmetries of the ‘bare’ linear problem (3) are generated by vector 
fields of the form : 

where t, z, q, q, y, ,U, v are functions of x, i, q, g, R and CD is a function of x,  t. 
The determining equations read as follows (see (20b)): 

D,(p) =iqV-iqO+RD,(r) (A2 .19~)  

D d ! ~ ) = - c W f q ) -  vDX(m + Y +RD,(z) (A2.19b) 

W v )  = -.%q+ rl + sox( 5) +i&(4f)DX(r) (A2.19~)  

D,(v) =2ivR+ 2pDx(gf)  +iD@q+fq) -iDx(fq)4,(5) -iD,(fq)DdZ) 
+i4,(fq)DLr). (A2.19d) 

The general solution of (A2.19) can be obtained rather easily. We assume, similarly 
to section Al.1, thatff0. Equating to zero the coefficient of qx in (A2.19b) we have: 

v=o. (A2.20~)  

Then, equating to zero coefficients of R, ,  q,, & and q, in (A2.19d), 

5 = 5(x, 0 T = T ( t ) .  (A2.20b) 

Moreover, the coefficient of R, in (A2.19~)  implies that pR=O, 
Thus equations (A2.19a, b, c) assume the following form: 

P = P ( o  7 = (2iP - 5 . 3 4  y=P-.iR (A2.21~)  

and (A2.19d), after substituting (A2.21a), becomes equivalent to 

Q = 2x, -  fZ and f55x=it.r. (A2.21 b) 
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Finally, solving (A2.21b), we obtain that c, r ,  q, y, CD are given exactly by (A2.13). 

A2.3. The one-parameter group inserting the spectral parameter 

Comparing the results of sections A2.1 and ,A2.2 we immediately obtain that in the 
case of the NHNS system algebras a and 2 (defined by (20)) are not identical if and 
only iff is linear in n. 

The vector field U corresponding to the parameter k, namely 

u=2(xa +P)aX+(ix-2a)qa,  t 2aaa,+ (4ba -2aP)ab (A2.22) 

is an element of d but does not belong to a". Therefore the one-parameter group 
generated by U is expected to introduce the spectral parameter into the non-parametric 
linear problem ( 3 ) .  

We will denote the action of this group by subscript k (for example: xk:=Tkx). 
Moreover 

(A2.23) 

To compute the action of the one-parameter group generated by U one has to solve 
the following system of differential equations: 

(A2.24~)  
d 
- (ax) =2akut 
dk 

d 
- (bk)=4a&k-2UkPk 
dk 

d 
dk 

d 
dk 

(A2.246) 

(A2 .24~)  - (xk) k ? J k  + 2bk 

(A2.24d) - (qk)=(ixk-2ak)qk 

assuming the following initial conditions: 

&=a ao=a bb=O P 0 = P  xo=x 40 = 4. (A2.25) 

First of all, let us compute ak and a k .  They can be treated as functions of the group 
parameter k and t because t is an invariant ofthe considered group. Integrating (A2 .24~)  
with respect to t we obtain : 

d 2 
- ( a k ) = a k .  
dk 

Solving ( A 2 . 2 6 ~ )  and then differentiating the result we have 

a a a*=- and a,, = 
1 -ka (1 -ka)2' 

(A2.26) 

(A2.27) 

Thus we have proved the formula (23d). I .  
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Now, taking into account (A2.27), one can easilycheck that equations (A2.246, c, d) 
can be rewritten in the following form: 

(A2.28~) 

(A2.286) 

d - ((1 -/~a)~b,) = -241 -ka)*Pk 
dk 
d 

-(((l-ka)*xk)=-2(1 -ka)’Pk 
dk 

It is convenient to introduce an auxiliary function wk= wk(t): 

wk:=2(1-ka)-210k [1-ma(t)I2Pm(t) 

which obviously satisfies the following initial conditions: 

WO([) = 0 Wk(0) = 0. 
Integrating both sides of (A2.28) with respect to k we have: 

(1 -ka)4bk=b-u(l -ka)’wk 
(I  -ka)’xk=x+(l -ka)*wk 

(A2.28~) 

(A2.29~) 

(A2.29b) 

(A2.30~) 
(A2.306) 

(A2.30~) 

From (A2.29) we compute P t  and substitute it into (A2.30~) (taking into account that 
bk=Pk.,). The result.can be put in the following form: 

(A2.31) d - ((1 -ka)’wx,,)=2(1 -ka)-’b. 
dk 

Integrating (A2.31) twice we obtain wk:  

[ l  -ka(r)]-’b(r) dr. (A2.32) 

Therefore (A2.306) becomes equivalent to (23u) while (A2.30~) becomes equivalent to 
(23e). Carrying out the integration in (A2.30~) we obtain exactly the formula (236). 

Thus we have proved that the vector field U (A2.22) generates the one-parameter 
group 7‘k given by (23). 

Appendix 3. Test for the generalized PainIevC property of the NHNS system 

This appendix contains the standard [29] test for the generalized Painlevi property of 
the system (2). We first perform it for a general inhomogeneity function f(x, I ) :  the 
result-linear dependence of thef(x, t )  on x, 

f(x, 1 )  = u(l)x + b(f) (A3.1) 
is already known from [24]. Then the test is continued to prove that (A3.1) is also the 
sufficient condition for that property. 
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Our system (2)  extended to (x, t ) d  reads 

iq,, + Us).=+ 2qR = 0 ( A 3 . 2 ~ )  

-iP.,+ (fp)s.r+ ~ P R = O  (A3.2b) 

-%+ (fpq),x+Ldw=O ( A 3 . 2 ~ )  

According to [29] we look for solution q , p  and R in the form of a Laurent series 

@(x, t )  = 0 (A3.3) 

where Q, is analytic in x, t .  Following [33] we exclude surfaces t =constant which are 

surfaces O.= does not vanish identically so we may locally define the surface by (A3.3) 
solved with respect to x, assuming 

@(x, t)=x-&) (A3.4) 

We now look for the solution of (A3.2) in the form of a Laurent series about the 
surface (A3.3) with Q, given by (A3.4), expanding also the inhomogeneity functionfin 
a Taylor series about the same surface. Thanks to arbitrariness of the pole surface, we 
may assume that it does not coincide with the zero surface off and begin the expansion 
offwith the zero-order term. The expansions will have the form 

where p is the analytic extension of Q to complex x and f .  

about some surface 

~ ~ not suitable for the expansion as characteristics of the system (A3.2). For the remaining 

m 
f ( X ,  0’ c f ( W - d t ) l ‘  ( A 3 . 5 ~ )  

,-0 

One of tk 

(A3.56) 

( A 3 . 5 ~ )  

(A3.5d) 

a = p = 1  

y = 2  

Ro= -h 
qopo = -1. 

where the leading order exponents a,  p ,  y and coefficients 40, PO, Ro, obtained by 
substitution of the lowest-order terms for (A3.5) into (A3.2) read 

( A 3 . 6 ~ )  

(A3.66) 

( A 3 . 6 ~ )  

(A3.6d) 

Substituting (A3.6u,-b,>) into (A3.5) and then the solution of (A3.5) into (A3.2), 
of time. 

we obtain a system of recurrence relations 

:oefficients qo. is rbitrary functic 
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n(n-3)hpn+2p0& 

in which the conventionf,=p,=q,=O and l/r!=O whenever r<O has been used to 
simplify the notation. 

For each n>O (A3.7) is a system of three linear equations with three unknowns. 
Its determinant reads 

(A3.8) 

The system is solvable iff it satisfies compatibility conditions at the ‘resonances’ n=2,  
n=3 andn=4. 

The first resonance n=O has already been considered in (A3.6a)-(A3.6~). The second 
one is due to the fact that the LHS of (A3.7~)  is zero for n=2. After substitution of the 
zero-order coefficients (A3.6a)-(A3.6~), and the first-order coefficients 

41 =i&0/(2h) (A3.9~)  

PI  PO/(%) (A3.9b) 

RI =O. (A3.94 

into (A3.7c), its RHS becomes -f2= -(&. Hence the necessary condition for ‘Painlev6 
integrability’ is the vanishing off-xy [24], i.e. the linear dependence off on x (A3.1). 

We shall now prove that (A3.1) is sufficient for satisfying the other compatibility 
conditions. 

So far, our procedure has produced two arbitrary functions-one is the shape of 
the singularity manifold U+, t ) ,  the other is connected with the resonance at n=O; it 
may be taken, for example, as 

-f& + I)n(n- 2)(n - 3)(n-4) 

C(t) = -iqo(t) = i/po(t) (A3.10) 

according to (A3.6d). If the compatibility condition at n=2 is satisfied, we obtain the 
third arbitrary function at that resonance. We may assume, for example, R2 as the 
arbitrary function of time 

R2(0 = WO (A3.11~) 

while q2 and p2 are calculated from (A3.7~2, b) in terms of that function 

p 2 = ( 2 i c ~ -  C)/(2~2fa) (A3.1 lb) 

q2=(2iCD- C)/(2f0). (A3.l IC) 
At n=3 the equations (A3.7a) and (A3.76) are linearly dependent (both sides). This 

yields another arbitrary function of time E(1). For symmetry of the formulae for qs ,p3  
we have chosen this so that 

q 3 ( 1 -  E)/C-p,EC=O,. (A3.12) 
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Then 

q3 = UE 

p3= U(E- 1)/C2 

(A3.134 

(A3.13b) 

R3=(Cpf0-4CDj& -2iCfd -C@&)/(4Cf)-h. (A3.13~) 

where 

U= (-iCph - 2i C& - 1 2iCOfefi + 6 Cfd - 12i C f i h  + iC@&,) /(4f;) (A3.14) 

The last resonance is connected with linear dependence of the coefficients at the first 
power of CD, namely the LHS of (A3.7a) multiplied by po plus the LHS of (A3.7b) 
multiplied by qo yields the double LHS of (A3.7~). Substitution of the actual values of 
the coefficients 40,. . . , q3 .PO, . . . , p 3 .  Ro, . . . , R 3 ,  i.e. (A3.10) and (A3.6~) for the zero 
order, (A3.9a,6, c) for the first order. (A3.1 IQ, b, c) for the second and (A3.13a, 6, c) 
for the third, yields-under the condition f2 =O-expressions having the same linear 
dependence also on the RHS of (A3.74 6, c). Thus, the assumption about the shape of 
the inhomogeneity functionf(A3.1) is both the necessary and suEcient condition for 
the Painled property of the system (2). 

References 

[I] Zakharov V E, Manakov S V, Novikov S P and Pitaievsky L P 1980 Theory of Solitons (Moscow: 

[2] Ablowitz M J and Segur H 1981 Solitons and rlte Iviuerse Scattering fiatc/oo,’~n (Philadelphia: SIAM) 
[3] Do Carmo M P 1976 Differential Geometry of Curves and Suifaees (Englewood ClitTs NJ: Prentice 

[4] Eisenhart L P 1960 A Treatise on the Dt@eererrtia/ Geometry o/Curues orid Surfaces (New York: Dover) 
[SI Sym A 1985 GeonteIric Aspects of the Einstein Equations and integrable Syslenw (Leclrwe Notes in 

161 Lund F 1978 Ann. Phys. 115 251 
[7] Sasaki R 1979 Nucl. Plrys. B 154 343 
[8] Levi D, Sym A and Tu G Z 1990 A working algorithm lo isolate integrable surfaces in E’ Preprinl 

[9] CieSlihski 1 1991 Non-local symmetries and a working algorithm to isolate integrable geometries Preprint 

Nauka) 

Hall) 

P/rysim 239) ed R Martini (Berlin: Springer) p 154 

DF-INFN N761, Rome 

IP-WUD N 8. Bialystok (1993 J.  Phys. A: Mufli. Gen. 26 L267) 
[IO] CieSlihski I 1993 J. Math. Phys. 34 2372 
[ I l l  Cieilihski J 1991 Lie point symmetries of the non-parametric linear problem-a convenient tool to 

[U]  CieSlikki J 1992 Nonlitrear Euolrrlion Equations aid Dyramical System ed M Boiti. L Martina and 

[I31 Tu G 2 unpublished result 
[I41 Levi D and Sym A 1990 Pliys. Lett. 149A 381 
1151 Lamb G L 1977 J.  Math. P/i.vs. 18 1654 
[16] Lakohmanan M 1977 Phy.~. Lett. 61A53 
[I71 Lakshmanan M and Bullough R K 1980 Phys. Lett. 80A 287 
[IS] Balakrishnan R 1982 J.  Phys. C: Solid Sfote Phy.  15 L1305 
[I91 Cieliliski J, Sym A and Wesselius W 1989 On the geometry of the inhomogeneous Heisenberg ferromag- 

[ZO] Sym A and Wesselius W 1987 Pity,$. Lett. lZOA 183 
[21] Zakharov V E. Takhtajan L A 1979 Tlieor. Mafh. Pliys. 38 26 
1221 Lakslimanan M and Ganesan S 1985 Phy.sieo A132 117 
[23] Calogero F and Degasperis A 1978 Letl. Nwvo Cifimto 22 420 

isolate integrable surfaces Prepiiit IP-WUD N 8, Bialystok 

F Pempinelli (Singapore: World Scientific) p 260 

net: non-integrable case Preprint Twente University N 789 (1993 J.  P/tj?~. A: Math. Gen 26 1353) 



1664 J Cieiliriski et ai 

I241 Porsezian K and Lakshmanan M 1991 3. Math. Phys. 32 2932 
Lakshmanan M and Porsezian K 1990 P/rys. Lett. 146 329 

[25] Olver P 1986 Applimlionr of Lie Groups to Differential Equations (New York: Springer) 
[26] Levi D unpublished result 
[27] Gupta M R 1979 Phy.7. Lett. 72A 420 
[28] CieSlihski J 1990 Nonliirear Evolution Equatioris: Iiitegrabi/ity and Spectral Merhods ed A Degasperis, 

[29] Weiss J, Tabor M and Camevale G 1983 3. Math. Phys. 24 522 

[30] Weiss J 1984 3. Math. P h p  25 2226 
[31] lnce E L 1956 Ordinary Dt@rential Equations (New York: Dover) pp239, 317 
[32] Conte R 1990 Painleud Tronscendmls e3 D Levi and P Wintemitz Proc. NATO Advonmd Research 

Workshop (Sainre-Adele, Quebec, 1990) Nalo AS1 Series 9: Physics, vol 218 (New York: Plenum) 
p 125 

Cramaticos B Painleud Tronscendents ed D Levi and P Winternitz Proc. NATO Advonced Reseorcb 
Workshop (Sainre-Adele, Quebec, 1990) Nato AS1 Series B: Physics, VOI 278 (New York: Plenum) 
p 145 

Kruskal M D Painlevi Transcendem ed D Levi and P Wintemitz Proc. NATO Advorieed Resenrcli 
Workshop (Sainte-Adele, Quebec, 1990) Nato AS1 Series 9: Physics, vol278 (New York: Plenum) 
p 187 

Weiss J Painleud Transcendents ed D Levi and P Winternitz Pi”. NATO Adumwd Research Workshop 

A P Fordy and M Lakshmanan (Manchester: Manchester University Press) p 295 

Ablovitz M J. Ramani A and Segur H 1981 J.  Muth. Phys. 21 715 

(Sainle-Adele, Quebec. 1990) Nato AS1 Series B: Physics, vol 278 (New York: Plenum) p 225 
[33] Ward R S I985 Phil. Trans. R Soc. A 315 451 


